SIDDHARTH DEY

EDUCATION_____

University of California San Diego Master of Science, Electrical and Computer Engineering

Indian Institute of Technology Madras

Bachelor of Technology (Honours), Mechanical Engineering

PUBLICATIONS

Siddharth D., Ridhi P., Nagamanikandan G., Thiyagarajan R., Asokan T. (2022) "Towards Mission-Specific characterization of the Diving Performance of an Underwater Glider". In: OCEANS 2022 [Link]

RESEARCH EXPERIENCE

Motion Prediction Models

Employer: Rivian, Role: Machine Learning Engineering Intern

- > Conducted in-depth analysis of trajectory prediction models using the Waymo Open motion dataset (WOMD)
- > Analyzed and experimented with the LSTM-based Multipath++ and transformer-based Wayformer models
- > Engaged in fine-tuning the ONNX computational graph and implementing Post-training quantization (PTQ)

Learning-based Task Recommendation System

Guide: <u>Prof. Sujit D.</u>, Mobile Systems Design Lab

- > Training a Transformer-Encoder model in PyTorch to evaluate the repetitions in a physical therapy exercise video
- > Using MLflow to track the parameters and metrics of the different experiments and store the artifacts in AWS S3

Underwater Glider Design using Variable Buoyancy

Guide: Prof. Asokan T., Robotics Laboratory, IIT Madras

- Published a paper titled "Towards Mission-Specific Characterization of the Diving Performance of an Underwater Glider" in the IEEE Oceans Conference & Exposition, 2022 [Link]
- > Worked on Multi-objective Optimization of wing parameters using Genetic Algorithm and K-means clustering

Modal Decomposition Analysis of Ventilated Jet Flow

Guide: Prof. Kameswararao A., Fluid Systems Laboratory, IIT Madras

- > Simulated the turbulent characteristics of a ventilated jet flow for varying inlet velocity ratios in OpenFoam
- Employed Reduced-Order Models including Proper Orthogonal and Dynamic Mode Decomposition on the velocity data points to examine the flow's coherent structures and extract spatiotemporal information

Localization of Anomalous Objects on Road

Employer: Toyota Connected India (TCIN), Role: Computer Vision Intern

- Investigated and reproduced solutions for localizing and mapping the GPS coordinates of small obstacles by integrating deep learning models of instance segmentation and depth map estimation
- Created an occupancy grid map with the help of a Variational Encoder-Decoder Model by training the neural network on images from the nuScenes dataset
- > Generated the Bird's Eye View (BEV) using Inverse Perspective Mapping (IPM) of the frontal scene

PROJECTS_____

Course Projects & Academic Work

Pose Estimation: Implemented 6D Pose Estimation using Iterative Closest Point (ICP) algorithm and training a PointNet network after extracting the objects' mask using U-Net for semantic segmentation

Website GitHub Linkedin Phone: 858-319-6386 Email: sidey@ucsd.edu

Sep' 2022 – Ongoing CGPA: 3.9/4.0

Jul' 2018 – Jul' 2022 CGPA: 9.18/10.0

Oct 2022 – *Mar* 2023

Jun 2023 – Sep 2023

Jun 2021 – Apr 2022

[Paper]

[Thesis]

Dec 2020 – Mar 2021

Jun 2021 – Jun 2022

Oct 2022 – Present

- Particle Filter SLAM: Used the Particle Filter algorithm for a differential-drive wheeled robot with LiDAR and inertial sensors to generate its trajectory and the occupancy grid map of the environment
- CUDA accelerated Q-learning: Trained multiple agents in parallel threads to update a shared Q-Table with CUDA, achieving successful navigation of a 2D grid environment while avoiding obstacles
- Depth Diffusion: Trained a Conditional Latent-Diffusion model (LDM) for monocular depth estimation on the NYU dataset using Vector Quantized Variational Autoencoder (VQ-VAE) to learn the latent space
- > Introduction to Digital Design (Teaching Assistant): Held Discussion sessions and designed question papers

Autonomous Staircase Climbing Bot, Robotics Challenge

Flipkart Grid 2.0, National Hackathon

- > Devised the bot based on a lead-screw mechanism to carry a payload of 3-5kgs robustly in unknown terrains
- Trained YoloV5 to generate 2D bounding boxes for staircase detection and demonstrated a PID-based speed controller in Gazebo with ultrasonic sensors plugin to avoid obstacles
- > Awarded the 'Most Innovative Approach' in the National Finale out of 6000+ participating teams

Survey of Deep RL Algorithms for Drone Navigation

Project Smartcopter

- > Developed an indoor drone capable of navigating in a GPS-denied environment
- Trained the drone to plan a collision-free path in minimal time with Reinforcement Learning algorithms including Deep Q Network (DQN) and Actor-Critic in Gazebo
- Processed the point clouds generated by depth cameras as input with Graph Convolutional Networks (GCN) to generate the Q-values, reducing collision frequency by 15% compared to directly running CNN on depth maps

Data Lake Analyst Intern

Fixnix, Chennai

- Data Mining of highly unstructured regulatory risk data to analyze regulatory violations and help increase data accessibility
- Performed web crawling using Beautiful Soup and Selenium to scrape online data and stored them in MongoDB which served as a local database
- Structured the scraped data using Named Entity Recognition (NER) for AI-driven text analysis with the help of NLP-based libraries including Spacy and nltk

SCHOLASTIC ACHIEVEMENTS

- > Secured All India Rank 1186 in Engineering Entrance JEE Advanced Exam, 2018 out of 150,000 candidates
- > Secured All India Rank 1917 in Engineering Entrance JEE Mains Exam, 2018 out of 1.5 million candidates

COURSE WORK_

- UCSD Graduate Courses: Deep Learning for 3D data, GPU programming, Statistical Learning A, Sensing and Estimation Robotics, Deep Generative Models, Intro to Visual Learning, Digital Image Processing*
- Undergraduate Robotics Courses: Introduction to Robotics; Mechanics and Control of Serial Robots; Dynamics and Control of Spacecraft; Measurements, Instrumentation, and Control
- > Online Courses (Coursera): Deep Learning Specialization, Reinforcement Learning Specialization, Robotics: Computational Motion Planning
- > Mathematics Courses: Applied Linear Algebra; Probability, Statistics, and Stochastic Processes

TECHNICAL SKILLS

- > Domain Skills: Computer Vision, Robotics, Deep Learning, Dynamics and Control
- > **Programming**: Python, C/C++, MATLAB
- > Python Libraries: PyTorch, Keras, scikit-learn, MLflow, OpenCV, ROS, JAX, CUDA, NumPy, pandas
- > Software/Tools: Visual Studio, Git, AWS, Arduino, ONNX, LaTeX, SolidWorks, ANSYS, OpenFoam

Jun 2019 – Jul 2019

Jul 2020 – Jan 2021

Apr 2020 – Apr 2021

[Video]